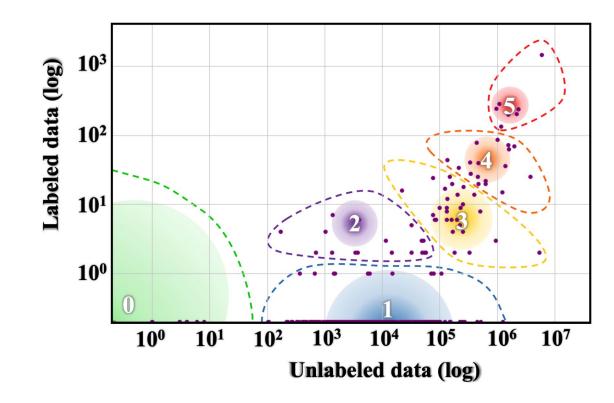

Sec 5.3

Under-resourced Languages

Under-resourced languages

More than 7,000 languages spoken today


Under-resourced languages

What makes a language under-resourced?

- Data availability: labeled data, unlabeled data, quality and representation
- Data domain: coverage and representation
- Noisy and/or opaque orthographies
- Unwritten languages
- Typological coverage:
 - Unique phonetic and phonological systems
 - Dialectal variation
 - Code-switching
 - Representation of non-native speakers

Taxonomy

- 0. Exceptionally limited resources: pretraining exacerbates situation
- 1. Some amount of unlabeled data
- 2. Small set of labeled data created
- 3. Unlabeled data enables pretraining, but limited labeled data
- 4. Large amount of unlabeled data, high quality but limited labeled
- 5. High-resource languages

Language resource distribution of Joshi et al. (2020). The size and colour of a circle represent the number of languages and speakers respectively in each category.

Colours (on the VIBGYOR spectrum; Violet-Indigo-Blue-Green-Yellow-Orange-Red) represent the total speaker population size from low (violet) to high (red).

(Joshi et al. 2020)

Languages: Examples

Class	5 Example Languages	#Langs	#Speakers	% of Total Langs
0	Dahalo, Warlpiri, Popoloca, Wallisian, Bora	2191	1.0B	88.17%
1	Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo	222	1.0B	8.93%
2	Zulu, Konkani, Lao, Maltese, Irish	19	300M	0.76%
3	Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew	28	1.1B	1.13%
4	Russian, Hungarian, Vietnamese, Dutch, Korean	18	1.6B	0.72%
5	English, Spanish, German, Japanese, French	7	2.5B	0.28%

Number of languages, number of speakers, and percentage of total languages for each language class

O. Dahalo:

Recorded Swadesh list

1. Cherokee:

Bible; 15k sentences parallel text; Tatoeba; Ubuntu

2. Zulu:

Recorded word lists; Tatoeba; Ubuntu

3. Cebuano:

Recorded word lists; BABEL; Bible; Wikipedia; Tatoeba; Ubuntu

4. Korean:

Bible; Wikipedia; OpenSLR 40, 58, 97; Tatoeba; Ubuntu

5. English:

 \forall

282

Distribution of the 55,991,866 articles in different language editions (as of 9 March 2021);^[4] the majority of the articles in Swedish, Cebuano, and Waray were created

ST: Resources Required

Two steps where resources are required: 1 for training and 2 for corpus creation

Labeled data:

parallel speech and translations, segmented

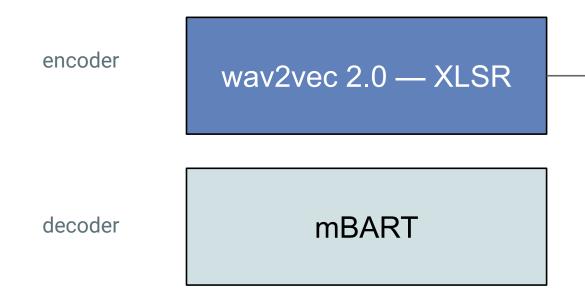
Unlabeled data:

monolingual source language speech; monolingual target language text

Pronunciation lexicons:

Use: alignment, hybrid ASR models; alternate data representations; CTC loss and/or compression

Availability:


MuST-C (1); mTEDx (8); CoVoST (21)

Bible (~1000); Wikipedia (285); linguistic resources often <2 hours

Hand-created lexicons often unreleased; Wikipron (117); Epitran (63)

(# source languages)

Pretrained Models

Methods previously discussed:

pretraining + finetuning, knowledge distillation, alternate data representations

Dependences on shared features:

in-vocabulary orthography, phone inventories, use of same model architecture

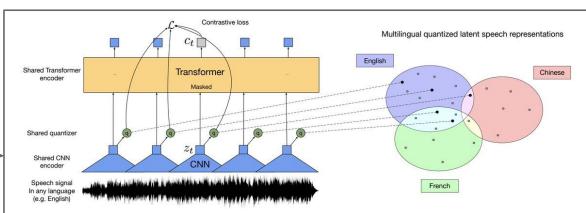


Figure 1: **The XLSR approach.** A shared quantization module over feature encoder representations produces multilingual quantized latent speech units whose embeddings are then used as targets for a single Transformer trained with contrastive learning. The model learns to share discrete tokens across languages, creating bridges across languages. Our approach is inspired by [15, 36] and builds on top of wav2vec 2.0 [6]. It requires only raw unsupervised speech audio from multiple languages.

(Baevski et al. 2020; Liu et al. 2020; Li et al. 2021)

Unless we assess on under-resourced Unless we assess on under-resourced languages, we will not know how well languages, we will not know how well methods apply!