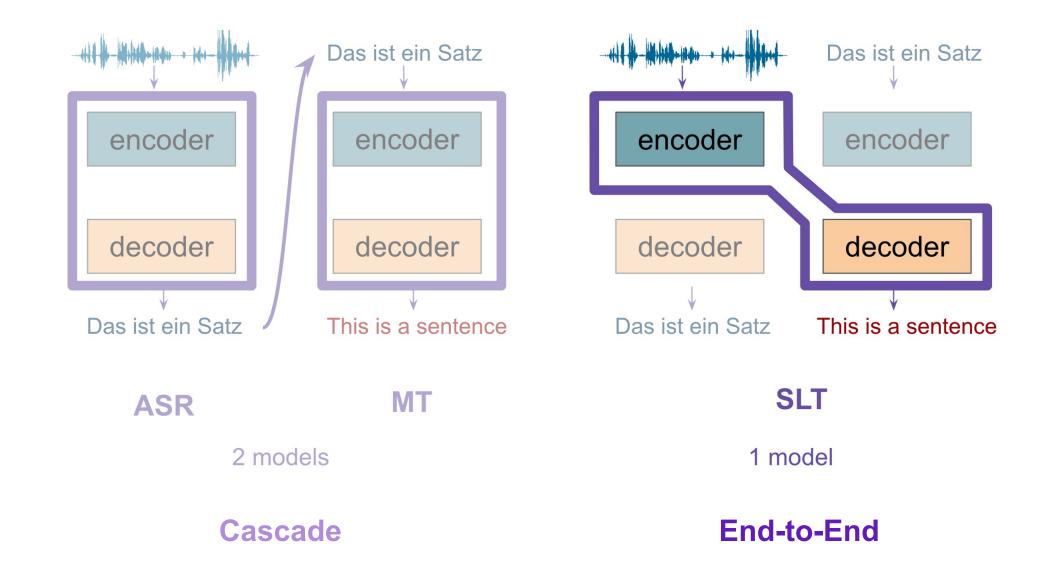
Sec 2.3 Architecture & Modifications

86

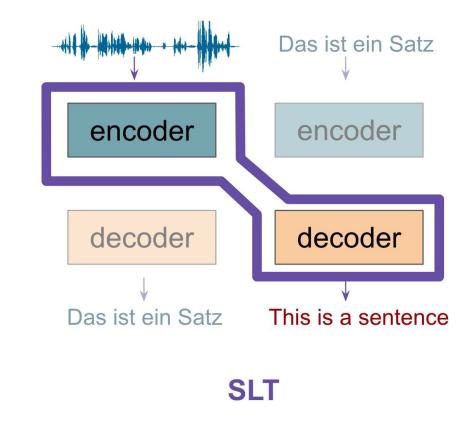
End-to-End Architecture



End-to-End Architecture

LSTM or Transformer Encoder-Decoder Models

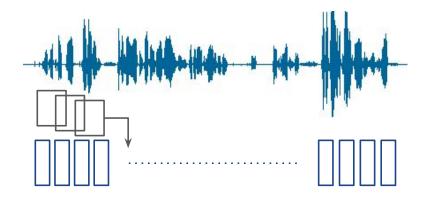
However, speech *f* text



1 model

End-to-End

Speech vs. Text



Discretized audio — speech frames

SPEECH: p ----- [∐∏[] ···· frames 0 ----→ [] [] [] Π... frames

Each feature vector is unique, Number of feature vectors per phone varies Speech features ~8-10x longer than the equivalent character sequences

С h a r a c

TEXT:

е S

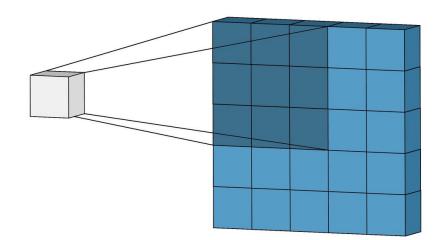
Challenges

- <u>Sequence length</u>:
 - increased memory requirements
 - greater distance between dependencies
- <u>Redundancy</u>:
 - adds task for model to learn
- <u>Variation</u>:
 - requires more data for model to learn correspondences

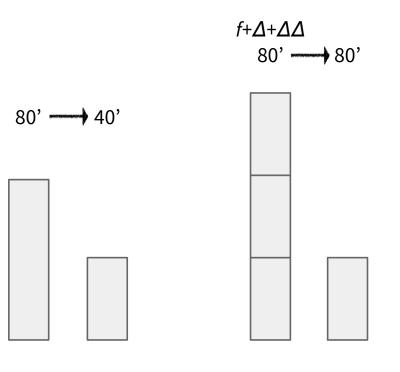
90

Dimensionality Reduction

Two directions: ① temporal and ② feature dimension Convolutional layers enable *fixed-length downsampling*



Scale sequence length and feature dimension linearly by a factor corresponding to the convolutional kernel size and stride length

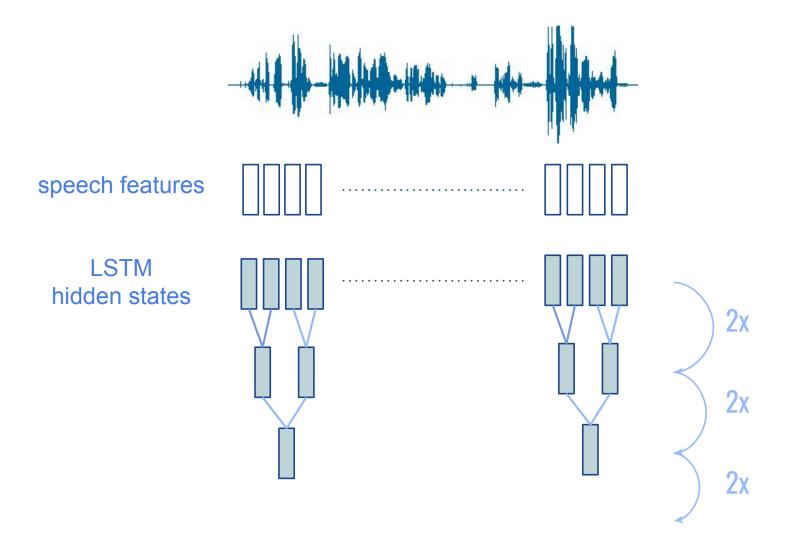


Conv1D, ConvLSTM layers

(Weiss et al. 2017; Bansal et al. 2018)

91

Pyramidal Encoder



- Motivation: do not need attention to the granularity of speech features
- Reduce dimensionality *through* encoder

concatenation

- sum
- skip -

-

- linear projection

8x temporal reduction

Listen, Attend, and Spell (Chan et al. 2015)

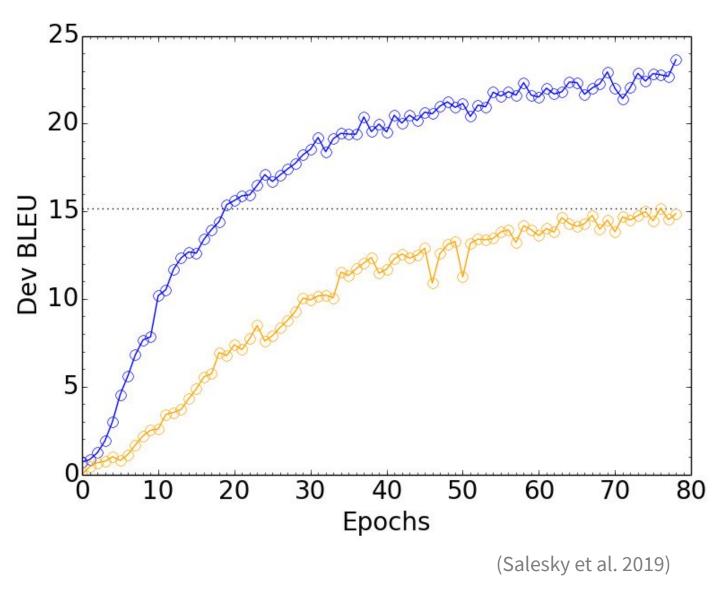
Linear projection, ASR: (Zhang et al. 2017; Sperber et al. 2018)

Pyramidal encoder in ST: (Weiss et al. 2017; Salesky et al. 2019; Sperber et al. 2019; Salesky et al. 2020)

Dimensionality Reduction Impact

Improved training efficiency!

- Reduces memory footprint
- Faster convergence
- Improved results



Encoder and Decoder Depth

MT: typically same depth for encoder and decoder

<u>ST</u>: empirically, deeper encoders than decoders perform better!

→ more parameters allocated to learning more complicated associations between inputs

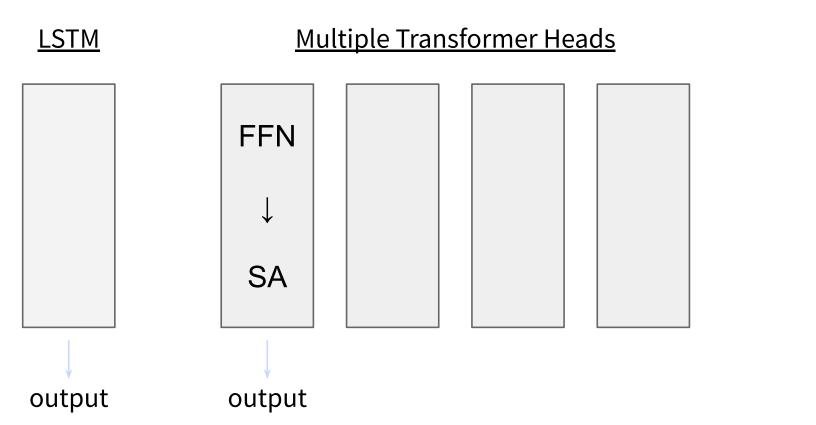
Models CTC [19] CTC/LM + speed perturbat

12Enc-12Dec (Ours) Stc. 12Enc-12Dec (Ours) Stc. 24Enc-24Dec (Ours) Stc. 36Enc-12Dec (Ours)

	Test WER
	17.4
tion [19]	13.7
	14.2
	12.4
	11.3
	10.6

(Zhang et al. 2017; Pham et al. 2018)

$LSTM \rightarrow Transformer$



Transformer-S

- 2D Convolutions
- Distance penalty for attention
- 2D self-attention

Conv-Transformer

. . .

(DiGangi et al. 2019; Huang et al. 2020)